Fast and Secure Distributed Nonnegative Matrix Factorization

نویسندگان

چکیده

Nonnegative matrix factorization (NMF) has been successfully applied in several data mining tasks. Recently, there is an increasing interest the acceleration of NMF, due to its high cost on large matrices. On other hand, privacy issue NMF over federated worthy attention, since prevalently image and text analysis which may involve leveraging (e.g, medical record) across parties (e.g., hospitals). In this paper, we study security problems distributed NMF. Firstly, propose a sketched alternating nonnegative least squares (DSANLS) framework for utilizes sketching technique reduce size subproblems with convergence guarantee. For second problem, show that DSANLS modification can be adapted setting, but only one or limited iterations. Consequently, four efficient methods both synchronous asynchronous settings We conduct extensive experiments real datasets superiority our proposed methods. The implementation available at https://github.com/qianyuqiu79/DSANLS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Effective Algorithms for Symmetric Nonnegative Matrix Factorization

Symmetric Nonnegative Matrix Factorization (SNMF) models arise naturally as simple reformulations of many standard clustering algorithms including the popular spectral clustering method. Recent work has demonstrated that an elementary instance of SNMF provides superior clustering quality compared to many classic clustering algorithms on a variety of synthetic and real world data sets. In this w...

متن کامل

Quantized nonnegative matrix factorization

Even though Nonnegative Matrix Factorization (NMF) in its original form performs rank reduction and signal compaction implicitly, it does not explicitly consider storage or transmission constraints. We propose a Frobenius-norm Quantized Nonnegative Matrix Factorization algorithm that is 1) almost as precise as traditional NMF for decomposition ranks of interest (with in 1-4dB), 2) admits to pra...

متن کامل

Quadratic nonnegative matrix factorization

In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices. Most NMF methods assume that each factorizing matrix appears only once in the approximation, thus the approximation is linear in the factorizing matrices. We present a new class of approximative NMF methods, called Quadratic Nonnegative Matrix Factorization (QNMF), wh...

متن کامل

Randomized nonnegative matrix factorization

Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of ‘big data’ has severely challenged our ability to compute this fundamental decomposition using deterministic algorithms. This paper presents a randomized hierarchical alternating least squares (HALS) algorithm to compute the NMF. By deriving a smaller matrix from the nonnegative input data, a mo...

متن کامل

Nonnegative Matrix and Tensor Factorization

T here has been a recent surge of interest in matrix and tensor factorization (decomposition), which provides meaningful latent (hidden) components or features with physical or physiological meaning and interpretation. Nonnegative matrix factorization (NMF) and its extension to three-dimensional (3-D) nonnegative tensor factorization (NTF) attempt to recover hidden nonnegative common structures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2022

ISSN: ['1558-2191', '1041-4347', '2326-3865']

DOI: https://doi.org/10.1109/tkde.2020.2985964